Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals
نویسندگان
چکیده
منابع مشابه
Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures.
Highly crystalline and surface-modified Zr-doped TiO(2) nanorods were successfully prepared using a nonhydrolytic sol-gel method that involves the condensation of metal halides with alkoxides in anhydrous trioctylphosphine oxide (TOPO) at either 320 or 400 degrees C. In addition, the interaction of the cross-condensation between the Ti and Zr species was studied by characterizing the morphologi...
متن کاملFerromagnetic order in aged Co-doped TiO2 anatase nanopowders.
This paper reports on the ferromagnetic properties of aged Ti(1-x)CoxO(2-delta) anatase nanopowders with different Co contents (0.03 < or = x < or = 0.10). It is shown for the first time that aged Co:TiO2 anatase samples retain rather high values of magnetization (M), remanence (Mr) and coercivity (Hc) which provide strong evidence for a preserved long-range ferromagnetic order. Room temperatur...
متن کاملIntrinsic ferromagnetism in insulating cobalt doped anatase TiO2.
Using complementary experiments we show that the room temperature ferromagnetism observed in anatase Co:TiO(2) films is not carrier mediated, but coexists with the dielectric state. TEM and x-ray absorption spectroscopy reveal a solid solution of Co in anatase, where Co is not metallic but in the +2 state substituting for Ti. Measurements at 300 K yield a M(S) of 1.1 mu(B)/Co atom, while all fi...
متن کاملFirst-principles study on transition metal-doped anatase TiO2
The electronic structures, formation energies, and band edge positions of anatase TiO2 doped with transition metals have been analyzed by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The model structures of transition metal-doped TiO2 were constructed by using the 24-atom 2 × 1 × 1 supercell of anatase TiO2 with one Ti a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2007
ISSN: 1932-7447,1932-7455
DOI: 10.1021/jp075898u